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Lecture 11

Classical  Approximating Functions

- Elliptic Approximations

- Thompson and Bessel Approximations

The Approximation Problem



Chebyshev Approximations
Chebyshev Polynomials

Figure from Wikipedia
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The first 9 CC polynomials:

• Even-indexed polynomials are functions of x2

• Odd-indexed polynomials are product of x and function of x2

• Square of all polynomials are function of x2 (i.e. an even function of x)

Review from Last Time



Chebyshev Approximations
Type 1

( )BW 2 2n

1
H ω =

1+ ω

( )
( )2 2

n

1
H ω =

1+ F ω

Butterworth A General Form

Fn(ω
2) close to 1 in the pass band and gets very large in stop-band

Observation:

The square of the Chebyshev polynomials have this property

( )
( )

CC 2 2
n

1
H ω =

1+ C ω

This is the magnitude squared approximating function of the Type 1 CC approximation

Review from Last Time



Chebyshev Approximations
Type 1

( )
( )

CC 2 2
n

1
H ω =

1+ C ω
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Poles of TCC(s)

Inverse 

Mapping

Review from Last Time



Chebyshev Approximations
Type 1

ω
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( )CCT ω

Even order

1

2
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ω1

( )CCT ω

Odd order

• |TCC(0)| alternates between 1 and                 with index number 

• Substantial pass band ripple

• Sharp transitions from pass band to stop band
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Review from Last Time



Chebyshev Approximations

• Analytical formulation:

–    Magnitude response bounded between 0   and            

in the stop band

–    Assumes the value of               at ω=1

–    Value of 1 at ω=0

–    Assumes extreme values maximum times

 in [1 ∞]

–    Characterized by {n,ε}   

• Based upon Chebyshev  Polynomials
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Type II Chebyshev Approximations  (not so common)
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Review from Last Time



Comparison of BW and Type 1 CC 

Responses

• CC slope at band edge much steeper than that 
of BW

• Corresponding pole Q of CC much higher than 
that of BW

• Lower-order CC filter can often meet same 
band-edge transition as a given BW filter

• Both are widely used

• Cost of implementation of BW and CC for same 
order is about the same
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Review from Last Time



Transitional BW-Chebyshev Approximations

( )
( )2 2

n

1
H ω =

1+ F ω

General Form

Define      FBWk=ω2k           FCCk=Cn
2(ω)

Consider:
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1+ F F
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• Other transitional approximations are possible

• Transitional approximations have some of the properties of both “parents”

Review from Last Time



Approximations

• Magnitude Squared Approximating Functions – HA(ω2)

• Inverse Transform - HA(ω2)→TA(s)

• Collocation

• Least Squares Approximations

• Pade Approximations

• Other Analytical Optimizations

• Numerical Optimization

• Canonical Approximations
– Butterworth

– Chebyshev

– Elliptic

– Bessel

– Thompson



Elliptic Filters
Can be thought of as an extension of the CC approach by 

adding complex-conjugate zeros on the imaginary axis to 

increase the sharpness of the slope at the band edge
Im

Re

1

( )ET jω

1 ΩS ω

2

1

1 +

ω

( )2

AT ω

Concept Actual effect of adding zeros



Elliptic Filters

• Basic idea comes from the concept of a 

Chebyschev Rational Fraction

• Sometimes termed Cauer filters



Chebyshev Rational Fraction

A Chebyshev Rational Fraction is a rational 

fraction that is equal ripple in [-1,1] and 

equal ripple in [-∞,-1] and [1,∞]



Chebyshev Rational Fractions
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1
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f(x)

Even-order CC rational fraction

1
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x

Odd-order CC rational fraction



Chebyshev Rational Fractions

Even-order CC rational fraction
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Odd-order CC rational fraction
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Elliptic Filters

( )
( )

E 2 2
Rn

1
H ω =

1+ C ω

Magnitude-Squared Elliptic Approximating Function

Inverse mapping to TE(s) exists

• For n even, n zeros on imaginary axis

• For n odd, n-1 zeros on imaginary axis

• Equal ripple in both pass band and stop band

• Analytical expression for poles and zeros not available

• Often choose to have less than n or n-1 zeros on imaginary axis

   (No longer based upon CC rational fractions)

Termed here “full order”



Elliptic Filters

1

2

1

1 +

AS

1 ΩS ω

( )ET jω

•  If of full-order, response completely 

characterized by {n,ε,AS.ΩS}

•  Any 3 of these paramaters are 

independent

•  Typically ε,ΩS, and AS are fixed by 

specifications (i.e. must determine n)



Elliptic Filters

1 ΩS ω

1

( )ET jω
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( )ET jω

1 ΩS ω

2
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1 +
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n odd n even

• (n-1)/2 peaks in pass band

• (n-1)/2 peaks in stop band

• Maximum occurs at ω=0

• |T(j∞)|=0

For full-order elliptic approximations

• n/2 peaks in pass band

• n/2 peaks in stop band

• |T(j0)|=1/sq(1+ε2) 

• |T(j∞)|=AS



Elliptic Filters
1

2

1

1 +

AS

1 ΩS ω

( )ET jω

• Simple closed-form expressions for poles, zeros, and |TE(jω)| do not exist

• Simple closed form expressions for relationship between {n,ε,AS, and ΩS} 

do not exist

• Simple expressions for max pole Q and slope at band edge do not exist

• Reduced-order elliptic approximations could be viewed as CC filters with 

zeros added to stop band

• General design tables not available though limited tables for specific 

characterization parameters do exist



Elliptic Filters 1

2

1

1 +

AS

1 ΩS ω

( )ET jω

Observations about  Elliptic Filters

• Elliptic filters have steeper transitions than CC1 filters

• Elliptic filters do not roll off as quickly in stop band as CC1 or even BW

• Highest Pole-Q of elliptic filters is larger than that of CC filters

• For a given transition requirement, order of elliptic filter typically less 

than that of CC filter

• Cost of implementing elliptic filter is comparable to that of CC filter if 

orders are the same

• Cost of implementing a given filter requirement is often less with the 

elliptic filters

• Often need computer to obtain elliptic approximating functions though 

limited tables are available

• Some authors refer to elliptic filters as Cauer filters



Canonical  Approximating Functions

Butterworth

Chebyschev

Transitional BW-CC

Elliptic

Thomson

Bessel

Thompson and Bessel Approximating Functions are 

Two Different Names for the Same Approximation



The filter's name is a reference to German mathematician Friedrich 

Bessel (1784–1846), who developed the mathematical theory on which 

the filter is based. The filters are also called Bessel–Thomson filters in 

recognition of W. E. Thomson, who worked out how to apply Bessel 

functions to filter design in 1949.[2]

Background in Bessel/Thomson filters

Thomson, W. E. (November 1949). "Delay networks having maximally flat 

frequency characteristics" (PDF). Proceedings of the IEE - Part III: Radio 

and Communication Engineering. 96 (44): 487–490.

https://en.wikipedia.org/wiki/Friedrich_Bessel
https://en.wikipedia.org/wiki/Friedrich_Bessel
https://en.wikipedia.org/wiki/Bessel_functions
https://en.wikipedia.org/wiki/Bessel_functions
https://en.wikipedia.org/wiki/Bessel_filter#cite_note-Thomson1949-2
https://www.researchgate.net/profile/Josef_Puncocha/post/Do_you_want_to_know_the_basic_papers_about_approximations_of_filters_See_attachment/attachment/59d622916cda7b8083a1cc5f/AS%3A280454482677766%401443876967288/download/thomson.pdf
https://www.researchgate.net/profile/Josef_Puncocha/post/Do_you_want_to_know_the_basic_papers_about_approximations_of_filters_See_attachment/attachment/59d622916cda7b8083a1cc5f/AS%3A280454482677766%401443876967288/download/thomson.pdf


Thomson and Bessel 

Approximations

-  All-pole filters

-  Maximally linear phase at ω=0



Thompson and Bessel 

Approximations
Consider T(jω)
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• Phase expressions are very difficult to work with !!

• Will first consider group delay and frequency distortion



Linear Phase
Consider T(jω)

( )
( )

( )

( ) ( )

( ) ( )
R IM

R IM

N jω N jω +jN jω
T jω  =  = 

D jω D jω +jD jω

Defn:  A filter is said to have linear phase if the phase is given by the expression

                               

       where θ is a constant that is independent of ω

( )( )
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( )
1 1tan tanI I

R R

N j D j
T j

N j D j
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( )( ) θωT j =

Note:   Linear phase definition requires not only linear relationship but 

must pass through the origin



Distortion in Filters

Types of Distortion

Frequency Distortion

• Amplitude Distortion

• Phase Distortion

Nonlinear Distortion

Although the term “distortion” is used for these two basic classes, 

there is little in common between these two classes



Distortion in Filters
Frequency Distortion

• Amplitude Distortion

   A filter is said to have frequency (magnitude) 

distortion if the magnitude of the transfer 

function changes with frequency

• Phase Distortion

  A filter is said to have phase distortion if the 

phase of the transfer function is not equal to 

a constant times ω

Nonlinear Distortion

  A filter is said to have nonlinear distortion if 

there is one or more spectral components in 

the output that are not present in the input



Distortion in Filters
• Phase and frequency distortion are concepts that apply to linear circuits

• If frequency distortion is present, the relative magnitude of the spectral 

components that are present in the output will be different than the spectral 

components in the input

• If phase distortion is present, at least for some inputs, waveshape will not be 

preserved

• Nonlinear distortion does not exist in linear networks and is often used as a 

measure of the linearity of a filter.

• No magnitude distortion will be present in a specific output of a filter if all 

spectral components that are present in the input are in a flat passband

• No phase distortion will be present in a specific output of a filter if all spectral 

components that are present in the input are in a linear phase passband

• Linear phase can occur even when the magnitude in the passband is not flat

• Linear phase will still occur if the phase becomes nonlinear in the stopband
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( )T jω
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( )T jω

( )T jω

ω

( )T jω

ω

( )T jω

ω

Flat Passband

Non-Flat Passband

Filter Passband and Stopband

• Frequencies where gain is ideally 0 or very small is termed the stopband

• Frequencies where the gain is ideally not small is termed the passband

• Passband is often a continuous region in ω though could be split



ω

( )T jω
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Linear Passband Phase

Nonlinear Passband Phase

Linear and Nonlinear Phase



Example:  Consider a signal x(t)=sin(ω1t) +  0.25sin(3ω1t)

Note the wave shape and spectral magnitude of x(t)
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sin(ω1t)

0.25*sin(3ω1t)

x(t) = sin(ω1t)+0.25*sin(3ω1t)

Preserving the Waveshape:



Preserving the waveshape

A filter has no frequency distortion for a 

given input if the output wave shape is 

preserved  (i.e. the output wave shape is a 

magnitude scaled and possibly time-shifted version of 

the input)

VOUT(t)=KVIN(t-tshift)

Mathematically, no frequency distortion for VIN(t) if 

Could have frequency distortion for other inputs
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Frequency Distortion

In most audio applications (and many other signal processing 

applications) there is little concern about phase distortion but some 

applications do require low phase distortion

In audio applications, any substantive magnitude distortion in the pass 

band is usually not acceptable

Any substantive nonlinear distortion in the pass band is unacceptable in 

most audio applications



Preserving wave-shape in pass band

A filter is said to have linear passband phase if the phase in the passband of 

the filter is given by the expression                                    where θ is a constant 

that is independent of ω
( )( ) θωT j =

VOUT(t)=KVIN(t-tshift)

If a filter has linear passband phase in a flat passband, then the waveshape is 

preserved provided all spectral components of the input are in the passband 

and the output can be expressed as an amplitude scaled and time shifted 

version of the input by the expression 



Preserving wave-shape in pass band

Example:

XIN(s) XOUT(s)
( )T s

Consider a linear network with transfer function T(s) 

( ) ( ) ( )in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

In the steady state

( ) ( ) ( )( ) ( ) ( )( )OUT 1 1 1 1 1 2 2 2 2 2X t  = A T jω sin ω t+θ T jω  + A T jω sin ω t+θ T jω+ +

Assume

( ) ( )
( )

( )
( )1 2

OUT 1 1 1 1 2 2 2 2

1 2

T jω T jω
X t  = A T jω sin ω t+ +θ  + A T jω sin ω t+ +θ

ω ω

       
         

      

Rewrite as:

If ω1 and ω2 are in a flat passband, ( )T jω

1ω 2ω

ω

( ) ( )1 2T jω  =  T jω

( ) ( )
( ) ( )1 2

OUT 1 1 1 1 2 2 2

1 2

T jω T jω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

         
          

        

Can express as:



Preserving wave-shape in pass band

Example:

XIN(s) XOUT(s)
( )T s

( ) ( ) ( )in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

If ω1 and ω2 are in a flat passband, 

( )T jω

1ω 2ω

ω

( ) ( )1 2T jω  =  T jω

( ) ( )
( ) ( )1 2

OUT 1 1 1 1 2 2 2

1 2

T jω T jω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

         
          

        

If ω1 and ω2 are in a linear phase passband,   

( ) ( )1 1 2 2T jω  = kω and  T jω = kω 

( )T jω

ω
1ω 2ω

k

1

( ) ( ) 1 2
OUT 1 1 1 1 2 2 2

1 2

kω kω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

        
          

        

( ) ( )  ( )  ( ) OUT 1 1 1 1 2 2 2X t  = T jω A sin ω t+k +θ  + A sin ω t+k +θ

( ) ( ) ( )OUT 1 inX t  = T jω x t+k

( )T jω  = kω



Preserving wave-shape in pass band

Example:

XIN(s) XOUT(s)
( )T s

( ) ( ) ( )in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

( )T jω

1ω 2ω

ω

( ) ( )1 2T jω  =  T jω

( )T jω

ω
1ω 2ω

k

1

( ) ( ) ( )OUT 1 inX t  = T jω x t+k

This is a magnitude scaled and time shifted version of the input so 

waveshape is preserved

( )

( )

1 1

2 2

T jω  = kω

 T jω = kω





A weaker condition on the phase relationship will also preserve waveshape with 

two specific spectral components present 

( )

( )
1 1

2 2

T jω ω

 T jω ω


=



( ) ( ) ( )( ) ( ) ( )( )OUT 1 1 1 1 1 2 2 2 2 2X t  = A T jω sin ω t+θ T jω  + A T jω sin ω t+θ T jω+ +

( )T jω

ωω1 ω2

Flat 
Passband



Amplitude (Magnitude) Distortion, Phase Distortion and 

Preserving wave-shape in pass band

XIN(s) XOUT(s)
( )T s

( )T jω

1ω 2ω

ω

( )T jω

ω
1ω 2ω

k

1

If ω1 and ω2 are any two spectral components of an input signal in which

                                   then the filter exhibits amplitude distortion for this input.( ) ( )1 2T jω    T jω

If ω1 and ω2 are any two spectral components of an input signal in which

                                   then the filter exhibits phase distortion for this input.( )

( )
1 1

2 2

T jω ω

 T jω ω






If ω1 and ω2 are any two spectral components of an input signal that exhibits 

either amplitude or phase distortion for these inputs, then the waveshape will 

not be preserved

                                   
( ) ( )OUT inX t   H x t+k •



Amplitude (Magnitude) Distortion, Phase Distortion and 

Preserving wave-shape in pass band

XIN(s) XOUT(s)
( )T s

Amplitude and phase distortion are often of concern in filter applications 

requiring a flat passband and a flat zero-magnitude stop band

Amplitude distortion is usually of little concern in the stopband of a filter

Phase distortion is usually of little concern in the stopband of a filter

A filter with no amplitude distortion or phase distortion in the passband and 

a zero-magnitude stop band will exhibit waveform distortion for any input 

that has a frequency component in the passband and another frequency 

component in the stopband 

It can be shown that the only way to avoid magnitude and phase distortion 

respectively for signals that have energy components in the interval ω1<ω< ω2  is 

to have constants k1 and k2 such that

( )

( )

1

1 2

2

T jω k
       for ω < ω < ω

T jω k ω

= 


 = 



Group Delay
Defn:  Group Delay is the negative of the phase derivative with respect to ω

( )d T jω

dω
G


= −

Recall, by definition,  the phase is linear iff ( )T jω kω =

Thus for                       , the phase is linear iff the group delay is constant

If the phase is linear, ( ) ( )d T jω d kω
- k

dω dω
G


= − = − =

But, of what use is the group delay?

The group delay and the phase of a transfer function carry the same information

( ) 0T j0 =



Group Delay

( )d T jω

dω
G


= −

Recall the identity

The phase of T(s) is analytically very complicated 

( ) ( )-1d -tan ωd T jω

dω dω
G


= − = −

Example:  Consider what is one of the simplest transfer functions

( )
1

T s =
s+1

( )
1

T jω =
jω+1

( ) -1 ω
T jω = - tan

1

 
  

 

( ) 1

1

-1

2

d tan u du

dx u dx

 
=  

+ 

( ) 1

1

-1

2

d -tan ω

dω ω
G = − = −−

+

1

1 2ω
G =

+
Thus

Note that the group delay is a rational fraction in ω2  instead of an arctan function



Group Delay

Theorem:  The group delay of any transfer function is a rational fraction in ω2

But, of what use is the group delay?

The phase of almost all useful transfer functions are complicated functions involving

sums of arctan functions and these are difficult to work with analytically



• Maximally linear phase at ω=0

• Maximally constant group delay at ω=0

But, of what use is the group delay?

Qualitatively:

The following two criteria are equivalent: 

Analytically working with the group delay (rational fraction 

in ω2)  rather than the phase (difference between 2 arctan 

functions)  is much more mathematically tractable



Group Delay

Theorem:  The group delay of any transfer function is a rational fraction in ω2

Proof of Theorem  (only shown here for case of all-pole transfer function):

( ) n
k

k

k=0

1
T s  = 

a s

( )
( ) ( )2 4 2 4

2 4 1 3 5

1
T jω  = 

1- a ω + a ω +... +jω a - a ω + a ω +...

( )
( ) ( )2 2

1 2

1
T jω  = 

F ω +jωF ω where F1 and F2 are even polynomials in ω

( )
( )
( )

2

2-1

2

1

ωF ω
T jω  = - tan

F ω

 
 
 
 



Group Delay

Theorem:  The group delay of any transfer function is a rational fraction in ω2

Proof of Theorem: ( )
( )
( )

2

2-1

2

1

ωF ω
T jω  = - tan

F ω

 
 
 
 

( ) 1

1

-1

2

d tan u du

dx u dx

 
=  

+ 

but from identity

( )

( )
( )

( )
( )

2

2

2

2

1

2

2

2

1

ωF ω
d

F ωT jω 1
 = -  

ω dωωF ω
1+

F ω

G

d

d


 
 
   = − •

 
 
  

( )
( )

( )
( )( )

( )( )
( )( )

( )
2

2 22
2 12 22

1 2
2

1

2

1

ωF ω F ωωF ω
F ω ωF ωd

dω ωF ω
  

dω F ω

d d

d

  
  − 
     

=
 
 

Now consider the right-most term in the product



Group Delay

Theorem:  The group delay of any transfer function is a rational fraction in ω2

Proof of Theorem: ( )
( )
( )

2

2-1

2

1

ωF ω
T jω  = - tan

F ω

 
 
 
 

( )
( )

( )
( )( )

( )( )
( )( )

( )
2

2 22
2 12 22

1 2
2
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Thus this term is an even rational fraction in ω



Group Delay

Theorem:  The group delay of any transfer function is a rational fraction in ω2

Proof of Theorem:
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It follows that           is the product of rational fractions in ω2 so it is also a 

rational fraction in ω2 
G

Although tedious, the results can be extended when there are zeros present 

in T(s) as well



Thomson and Bessel 

Approximations
-  All-pole filters

- Maximally linear phase at ω=0

- .

-  All-pole filters

- Maximally constant group delay at ω=0

-            at ω=01G =
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These criteria can be equivalently expressed as

( )
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(this is normalized to phase derivative = -1 at ω=0 and is 

the counterpart to normalizing a band edge in a lowpass 

filter to ω=1)

(this is normalized to τG =1 at ω=0 and is the counterpart 

to normalizing a band edge in a lowpass filter to ω=1)



Thomson and Bessel Approximations
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Must find the coefficients a0, a1,… an to satisfy the maximal constant group delay 

constraints

Theorem:    If                              then       is given by the expression ( )
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This theorem is easy to prove using the identity given above,

 proof will not be given here



Stay Safe and Stay Healthy !



End of Lecture 11
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